
 1 

  

Abstract— The purpose of this report is to understand the 

procedures and practical applications of various operating system 

phenomena by emulating an operating system. The operating 

system, called E-OS, is a minimal and lightweight operating 

system, built to be modular and exploit the benefits of object-

oriented programming. 

 

I. INTRODUCTION 

MULATED OS, abbreviated to E-OS, is an operating 

system built from a modular approach featuring various 

necessities of a basic operating system. The aim of this project 

is to gain insight into the various requirements of an operating 

system while keeping the source code clean and easy to 

understand. While E-OS does not directly interact with the 

hardware of the machine and operates through a windows 

kernel, it still emulates the functioning of the main modules 

found in an operating system. E-OS follows a modular 

approach, which allows specific modules to be changed while 

still interacting with other modules by means of special function 

calls. This offers a layer of abstraction between any two 

modules. 

 

II. A BASIC OVERVIEW 

E-OS is a minimalistic emulation of a few functionalities of 

a generic personal operating system. The user can interact with 

the operating system and pass several commands. A full list of 

these commands will be talked about in the COMMANDS 

section. 

The architecture of E-OS consists of four main modules- The 

shell, which interacts with the user, a process management 

module, which is responsible for creating and terminating 

processes, a memory management module, responsible for 

memory allocation and deallocation and finally a file 

management module, responsible for various file management 

functionalities like the reading of a file and writing to a file. 

 

A. The Shell 

The Shell is designed as an interface for the user to interact 

with the operating system using easy to follow commands- a 

more reliable and less risky way of exploiting the operating 

system features. The Shell accepts inputs into a buffer that can 

accommodate a maximum of 100 characters, and the parses the 

user’s input to obtain the command given and the arguments 

passed. It is important to note that all arguments are space 

 
 

separated and that using space in a n3ame or a command will 

result in the operating system to interpret it as two arguments or 

one command and one argument. Escape characters are not yet 

supported in the E-OS shell. 

The basic functioning of the shell is as follows. Once the 

system boots up, the shell asks for a user login. The password 

is hidden for security. When the user logs in successfully, the 

shell shows a prompt, which indicates that the shell is ready to 

receive a command. 

There are two main types of commands the shell identifies- 

commands that it can perform itself, and commands that need 

assistance from the processing module. The commands that the 

shell itself can perform include basic echo commands, 

commands to print out the user name, basic arithmetic, etc. For 

commands needing file access or other resources like processes, 

where the shell cannot, by its own capabilities, perform the 

command, the shell calls a special function in the process 

management module, which then interacts with the necessary 

modules. The output of any command is displayed without a 

prompt on the shell console. 

 

B. The Process Management Module 

Process management in EOS is laid out like so: The Process 

Management module lies below the Shell, using which the 

user issues commands to create processes that perform 

specific functions. Owing to this responsibility of interacting 

with the File Management module, the Process Management 

Module is above the Memory Management Module and File 

Management Module.  

Every time a user issues a specific command, a process is 

created and added to memory, and provided with a command 

code that specifies the purpose of that process. The process 

stays in memory until it is executed. There are many processes 

that have to be handled, and for that we need many scheduling 

Emulating an Operating System 

Aaditya Naik, Aditya Chakraborti, Aditya Pansare, Utkarsh Pant 

E 
 

Fig. 1-  The Architecture of E-OS 

  



 2 

algorithms. EOS uses the round-robin algorithm, which is 

based on the philosophy of “providing a fair, definite time for 

each process to execute itself, and after the time slice, next 

process takes over”. As a process completes execution, it is 

removed from memory. A Process Allocation Table is 

maintained to track the start-address and size of every process. 

The contiguous allocation method has been simulated in EOS. 

The Process Management Module takes care of simple shell 

commands, read operations, writes operations and other tasks 

in the system. Every process is a separate entity which 

coexists with other processes. These entities have well defined 

structure. 

C. The Memory Management Module 

The Memory Management Module, essentially deals with 

various logical functions for storage, retrieval and other 

“optimization” services. Unlike “The Shell”, this module is 

not directly accessible by the user and the reason for its 

abstraction is the security of the system. It is possible that a 

user might not know the logical organization of the module 

and may get confused to consequently hamper or alter the 

module components. This will result in deregulation and 

“crashes” of the system. 

This module resides between the physical storage 

mechanism and the Process Management Module and 

alongside File Management Module, as per design 

architecture. Whenever something needs to be stored or 

retrieved, the Process Management Module creates a 

“process” that communicates with the Memory Management 

Module with a command request and supplies the parameters 

of the target file or data. The Memory Management Module 

accepts these parameters and performs the “store” or 

“retrieve” functions and returns a result to the “Process 

Management Module”. Based on this result, further actions 

can be taken.  

This module as implemented in the project has a few 

limitations resulting in some constraints. Here a file or a 

process is stored in contiguous memory locations at a stretch 

in the memory block. There is a distinction between “Files” 

and “Processes” in the implemented “Memory Space”. 

“Memory Allocation Tables” consists of details of the stored 

file or process such as the name, the size and the “start block 

index” of the memory.  These allocation tables provide the OS 

with the information about the “processes and files” in the 

memory and thus efficient access, loading or offloading is 

brought about in the memory. Ideally, the processor accesses 

or executes files or processes the data that is residing in the 

“Main Memory”. 

 

D. The File Management Module 

The file management module of EOS manages all of the 

files stored in the secondary memory array. It has a set of 

functions via which the module interacts with files. It is the 

bridge between a process and the files stored in the secondary 

memory. 

If a user wants to interact with a file, they will type the 

appropriate command in the shell. The shell will then create a 

process to interact with the file. The process will contain the 

name of the file which it will pass on to the file management 

module. The file management module will then utilize its 

functions to interact will the file. 

Some of these functions are: 

1) Create a file or write to a file 

This will create a new file or overwrite a file. It will generate 

an ID, making sure that no two IDs are ever same. The size of 

the file will be calculated based on the length of the data, fetch 

the starting position of the file in the memory array from the 

Memory Management module and will take the data from the 

user and put it in the file. 

 

2) Read a file 

This will allow the user to read the contents of a file by 

specifying the file name to the shell. If the file does not exist, 

then an error message is returned. 

 

3) Append a file 

This function allows to add data to a previously created file. 

It will take the name of the file to find the file and append the 

new data to that file. If the file is not found, or the file does 

not exist, it will create a new file with the file name being the 

name that was specified to the shell by the user, and it will 

then store the new data in that file. 

 

4) Delete a file 

This function provides the functionality to delete a 

previously created file. Deletion will only be successful if the 

user has the authority to delete file. If, the file name specified 

does not exist, then no file would be deleted and an error 

message would be returned. 

 

The files that are created, are stored in the memory array in 

a contiguous manner. This is an implementation of contiguous 

file allocation. In this, blocks of the files are stored in a 

sequential manner in the memory array. Since, contiguous file 

allocation is not an efficient user of memory, and leaves 

chunks of memory that is wasted, compaction is done to 

reduce the wasted memory. 

The File Management module has a File Allocation Table 

(FAT) to specify and recognize the addresses of each file. It 

will contain the name, the starting location and the size of a 

file. Every time a file is created, a new entry in the FAT table 

is assigned. This way any file stored in the memory can be 

located. 

The File Management module also provides the 

functionality of providing access to processes to read the FAT 

table and find the file location. 

 

III. COMMANDS 

This is a handy list of commands to try out on the command 

line.  

A. exit 

Exits the shell, shutting down the OS. Takes no arguments. 

B. echo 

Echoes your arguments back at you. 



 3 

C. who 

Tells you who you are. Takes no arguments. 

D. help 

Displays all inbuilt commands and their description. Takes 

no arguments. 

E. cow 

Shows an ASCII cow. Takes no arguments. 

F. add 

Adds the arguments together. 

G. sub 

Subtracts argument 2 from argument 1. Takes 0, 1 or 2 

arguments. 

H. mult 

Multiplies all arguments. 

I. div 

Divides argument 1 by argument 2. Takes 0, 1 or 2 

arguments. 

J. addusr 

Adds a new user to the system. 

K. remusr 

Removes a user. Takes one argument. 

L. chpass 

Changes a user's password. Takes no arguments. 

M. login 

Takes you to the login screen. 

N. roundrobin 

Processes the arguments in a round robin fashion. Takes 

multiple processes as arguments, each process being 

represented by 3 arguments- the name, the size and the burst 

time. 

O. lf 

Lists files. Takes no arguments. 

P. fat 

Displays the file allocation table. Takes no arguments. 

Q. read  

Displays the contents of the file passed. Takes 1 argument. 

R. write 

Writes a file to memory. Takes multiple arguments, the first 

being the file name, and the rest being the contents. 

S. append 

Appends the contents to a file in memory. Takes multiple 

arguments, the first being the file name, and the rest being 

the contents. 

T. rm 

Remove a file from memory. Takes one argument. 

U. addprc 

Adds a process to volatile memory until specifically 

removed. Takes 2 arguments, the process name and size. 

V. delprc 

Removes process from volatile memory. Takes 1 argument. 

W. pat 

Displays the process allocation table for volatile memory. 

IV. SCREENSHOTS 

 
Fig. 2- Logging into the system 

 

 
Fig. 3- Basic commands 

 

 
Fig. 4- Basic arithmetic on the shell 

 



 4 

 
Fig. 5- File making and editing commands 

 

 
Fig. 6- Modifying users and passwords 

 

 
Fig. 7- Process management commands 

V. CONTRIBUTIONS 

A. The Shell- Aaditya Naik  

B. Process Management Module- Utkarsh Pant 

C. Memory Management Module- Aditya Pansare 

D. File Management Module- Aditya Chakraborti 

 

VI. CONCLUSION 

A downscaled replication of a few functionalities and 

components was achieved using simple, primitive 

programming concepts on an object-oriented C++ platform. 

This project has its own limitations owing to excessive 

programming necessity, proper conceptual distinction and 

showcasing of various conditional branches on various actions. 

Although, all these could be brought down to discussion and 

certain parameters can be assumed to consequently give us a 

valid small-scale model of an “Operating System”. Apart from 

the generic implementation, we could test our creativity in a few 

areas which helped us understand the base concept and create 

an attitude “to tackle- come what may”. 

 

ACKNOWLEDGMENT 

We, the development team of EOS are delighted over the 

completion of the project and have thoroughly enjoyed working 

on the same. We would like to thank Dr. Dhirendra Mishra 

(MPTSME, NMIMS) who assigned us this project as a part of 

our evaluation structure. We observed that there were 

limitations regarding the implementation of the idea as 

conceptualized, but we were happy to move past them and try 

to figure out alternative and analogous solutions around them 

and make the project run. We, definitely, have gained a life-

long learning experience and have realized how teamwork is 

essential even in small projects and to perfect an idea that is 

conceived.  

REFERENCES AND FOOTNOTES 

 

REFERENCES 

 

[1]  Andrew S. Tanenbaum & Herbert Bos, “Modern Operating Systems”,4th 

edition, Pearson Education, Inc., Upper Saddle River, New Jersey, 07458. 

[2]  

[2] William Stallings, “Operating Systems: Internals & Design 

Principles”, 7th ed.,  Pearson Education, Inc., Upper Saddle River, 

New Jersey, 07458 

 

 


